Fatigue-Crack Propagation Behavior of Ductile/Brittle Laminated Composites

نویسندگان

  • D. R. BLOYER
  • K. T. VENKATESWARA RAO
  • R. O. RITCHIE
چکیده

A study has been made of the fatigue-crack propagation properties of a series of laminated Nbreinforced Nb3Al intermetallic-matrix composites with varying microstructural scale but nominally identical reinforcement volume fraction (20 pct Nb). It was found that resistance to fatigue-crack growth improved with increasing metallic layer thickness (in the range 50 to 250 mm) both in the crack-divider and crack-arrester orientations. For a given layer thickness, however, the properties in the crack-arrester orientation were superior to the crack-divider orientation. Indeed, the fatigue resistance of the crack arrester laminates was better than the fatigue properties of unreinforced Nb3Al and pure Nb; both laminate orientations had significantly better fatigue properties than Nb-particulate reinforced Nb3Al composites. Such enhanced fatigue performance was found to result from extrinsic toughening in the form of bridging metal ligaments in the crack wake, which shielded the crack tip from the applied (far-field) driving force. Unlike particulate-reinforced composites, such bridging was quite resilient under cyclic loading conditions. The superior crack-growth resistance of the crackarrester laminates was found to result from additional intrinsic toughening, specifically involving trapping of the entire crack front by the Nb layer, which necessitated crack renucleation across the layer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fatigue behavior and damage modeling of SCS-6/titanium/titanium aluminide hybrid laminated composite

The fatigue behavior of the unnotched and notched silicon carbide fiber-reinforced titanium/titanium aluminide hybrid laminated composite was investigated at room temperature. The evolution of microstructural damage and its effect on stiffness and strength degradation was quantified as a function of loading cycles and applied stress levels. Fatigue crack propagation behavior and damage mechanis...

متن کامل

Mechanisms of fatigue-crack propagation in ductile and brittle solids

The mechanisms of fatigue-crack propagation are examined with particular emphasis on the similarities and differences between cyclic crack growth in ductile materials, such as metals, and corresponding behavior in brittle materials, such as intermetallics and ceramics. This is achieved by considering the process of fatiguecrack growth as a mutual competition between intrinsic mechanisms of crac...

متن کامل

Mechanics and mechanisms of fatigue damage and crack growth in advanced materials

The mechanisms of fatigue-crack propagation in ceramics and intermetallics are examined through a comparison of cyclic crack-growth behavior in ductile and brittle materials. Crack growth is considered to be a mutual competition between intrinsic mechanisms of crack advance ahead of the crack tip, which promote crack growth, and extrinsic mechanisms of crack-tip shielding behind the tip, which ...

متن کامل

Mechanisms of Fatigue Crack Propagation in Metals, Ceramics and Composites: Role of Crack Tip Shielding*

Crack tip shielding phenomena, whereby the "effective crack-driving force" actually experienced at the crack tip is locally reduced, are examined with reference to fatigue crack propagation behavior in metals, composites and ceramics. Sources of shielding are briefly described in terms of mechanisms relying on the production of elastically constrained zones which envelop the crack (zone shieldi...

متن کامل

HIGH-TEMPERATURE FRACTURE AND FATIGUE RESISTANCE OF A DUCTILE b-TiNb REINFORCED g-TiAl INTERMETALLIC COMPOSITE

ÐThe high-temperature fatigue-crack propagation and fracture resistance of a model g-TiAl intermetallic composite reinforced with 20 vol.% ductile b-TiNb particles is examined at elevated temperatures of 650 and 8008C and compared with behavior at room temperature. TiNb reinforcements are found to enhance the fracture toughness of g-TiAl, even at high temperatures, from about 12 to 040 MPa m, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999